A Parallel and Concurrent Implementation of Lin-Kernighan Heuristic (LKH-2) for Solving Traveling Salesman Problem for Multi-Core Processors using SPC3 Programming Model

نویسندگان

  • Muhammad Ali Ismail
  • Shahid H. Mirza
  • Talat Altaf
چکیده

With the arrival of multi-cores, every processor has now built-in parallel computational power and that can be fully utilized only if the program in execution is written accordingly. This study is a part of an on-going research for designing of a new parallel programming model for multi-core processors. In this paper we have presented a combined parallel and concurrent implementation of Lin-Kernighan Heuristic (LKH-2) for Solving Travelling Salesman Problem (TSP) using a newly developed parallel programming model, SPC 3 PM, for general purpose multi-core processors. This implementation is found to be very simple, highly efficient, scalable and less time consuming in compare to the existing LKH-2 serial implementations in multicore processing environment. We have tested our parallel implementation of LKH-2 with medium and large size TSP instances of TSBLIB. And for all these tests our proposed approach has shown much improved performance and scalability. KeywordsTSP; Parallel Heuristics; Multi-core processors, parallel programming models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems

Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...

متن کامل

General k-opt submoves for the Lin-Kernighan TSP heuristic

Local search with k-exchange neighborhoods, k-opt, is the most widely used heuristic method for the traveling salesman problem (TSP). This paper presents an effective implementation of k-opt in LKH-2, a variant of the Lin–Kernighan TSP heuristic. The effectiveness of the implementation is demonstrated with experiments on Euclidean instances ranging from 10,000 to 10,000,000 cities. The runtime ...

متن کامل

Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP

Multi-trial Lin-Kernighan-Helsgaun 2 (LKH-2) is widely considered to be the best Interated Local Search heuristic for the Traveling Salesman Problem (TSP) and has found the best-known solutions to a large number of benchmark problems. Although LKH-2 performs exceptionally well on most instances, it is known to have difficulty on clustered instances of the TSP. Generalized Partition Crossover (G...

متن کامل

Solving Arc Routing Problems Using the Lin-Kernighan-Helsgaun Algorithm

It is well known that many arc routing problems can be transformed into the Equality Generalized Traveling Salesman Problem (E-GTSP), which in turn can be transformed into a standard Asymmetric Traveling Salesman Problem (TSP). This opens up the possibility of solving arc routing problems using existing solvers for TSP. This paper evaluates the performance of the state-of-the art TSP solver Lin...

متن کامل

New Heuristic Algorithms for Solving Single-Vehicle and Multi-Vehicle Generalized Traveling Salesman Problems (GTSP)

Among numerous NP-hard problems, the Traveling Salesman Problem (TSP) has been one of the most explored, yet unknown one. Even a minor modification changes the problem’s status, calling for a different solution. The Generalized Traveling Salesman Problem (GTSP)expands the TSP to a much more complicated form, replacing single nodes with a group or cluster of nodes, where the objective is to fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011